LeetCode #235 Lowest Common Ancestor of a Binary Search Tree

Problem

Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”

Examples

Given binary search tree: root = [6,2,8,0,4,7,9,null,null,3,5]

1
2
3
4
5
6
7
     _______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
1
2
3
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
Output: 6
Explanation: The LCA of nodes 2 and 8 is 6.
1
2
3
4
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
Output: 2
Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself
according to the LCA definition.

Solution1

Method: Recursive

Time Complexity:

Space Complexity:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None

class Solution:
def lowestCommonAncestor(self, root, p, q):
"""
:type root: TreeNode
:type p: TreeNode
:type q: TreeNode
:rtype: TreeNode
"""
if p.val > q.val:
return self.lowestCommonAncestor(root, q, p)
if root.val < p.val:
return self.lowestCommonAncestor(root.right, p, q)
elif root.val > q.val:
return self.lowestCommonAncestor(root.left, p, q)
else:
return root

Solution2

Method: Iterative

Time Complexity

Space Complexity

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None

class Solution:
def lowestCommonAncestor(self, root, p, q):
"""
:type root: TreeNode
:type p: TreeNode
:type q: TreeNode
:rtype: TreeNode
"""
if p.val > q.val:
return self.lowestCommonAncestor(root, q, p)

node = root

while node.val < p.val or node.val > q.val:
if node.val < p.val:
node = node.right
else:
node = node.left
return node